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SUMMARY

Interface conditions (IC) between subdomains have an important impact on the convergence rate of
domain decomposition algorithms. We �rst recall the Schwarz method which is based on the use of
Dirichlet conditions on the boundaries of the subdomains and overlapping subdomains. We explain
how it is possible to replace them by more e�cient ICs with normal and tangential derivatives so that
overlapping is not necessary. It is possible to optimize the coe�cients of the IC in order to achieve
the best convergence rate. Results are given for the convection—di�usion equation. Then we consider
the compressible Euler equations which form a system of equations. We present a new analysis of the
use of interface conditions based on the �ux splitting. We compute the convergence rate in the Fourier
space. We �nd a dependence of their e�ectiveness on the Mach number M . For M = 1

3 , the convergence
rate tends to zero as the wavenumber of the error goes to in�nity. We stress the di�erences with the
scalar equations. We present numerical results in agreement with the theoretical results. Copyright ?
2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We present results on the optimization of interface conditions for the convection–di�usion
equation and the compressible Euler equations. The interface conditions have an important im-
pact on the convergence of domain decomposition algorithms [1–8]. The question is well un-
derstood for scalar equations. We shall recall basic results for the scalar convection–di�usions
equation. Systems of equations, such as the Euler equations, need further investigations. From
our preliminary results presented here on this system of partial di�erential equations (PDEs),
we shall stress the main and unexpected di�erences w.r.t the scalar case. In a joint paper by
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1540 V. DOLEAN, S. LANTERI AND F. NATAF

V. Dolean et al. in this volume, the Smith factorization is introduced in order to analyse and
propose improved interface conditions.
The paper is organized as follows: in Section 2, the optimization procedure of the interface

conditions for the scalar convection–di�usion is presented. In Section 3, the derivation of
the ‘classical’ interface conditions for the Euler system is given. The convergence of the
corresponding algorithm is analysed in Section 4. Di�erences with the scalar case are stressed
in Section 5. Then we conclude in Section 6.

2. OPTIMIZED INTERFACE CONDITIONS FOR THE SCALAR
CONVECTION–DIFFUSION EQUATION

2.1. The original Schwarz method (1870)

The �rst domain decomposition method was developed at the end of the 19th century by
the mathematician H. Schwarz. His goal was to study the Laplace operator and not at all to
develop numerical methods. At that time, the main tool for this purpose was Fourier analysis
and more generally the use of special functions. Geometries of the domain were essentially
restricted to simple geometries: rectangles and disks. His idea was to study the case of a
domain that is the union of simple domains. For example, let �=�1 ∪�2 with �1 ∩�2 �= ∅.
We want to solve (Figure 1)

−�(u) =f in �

u=0 on @�

H. Schwarz proposed the following algorithm (Multiplicative Schwarz Method, MSM):

Ω
1

Ω
2

Figure 1. Overlapping domain decomposition.
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Let (un1 ; u
n
2) be an approximation to (u|�1 ; u|�2) at step n of the algorithm, (u

n+1
1 ; un+12 ) is

de�ned by

−�(un+11 )=f in �1;

un+11 =0 on @�1 ∩ @�;
un+11 = un2 on @�1 ∩�2;

−�(un+12 )=f in �2

un+12 =0 on @�2 ∩ @�
un+12 = un+11 on @�2 ∩�1

Problem in domain �1 has to be solved before problem in domain �2. This algorithm is
sequential.
A slight modi�cation of the algorithm is the additive Schwarz method (ASM)

−�(un+11 )=f in �1;

un+11 =0 on @�1 ∩ @�;
un+11 = un2 on @�1 ∩�2;

−�(un+12 )=f in �2

un+12 =0 on @�2 ∩ @�
un+12 = un1 on @�2 ∩�1

Problems in domains �1 and �2 may be solved concurrently. The ASM is a parallel algorithm
and is adapted to parallel computers. H. Schwarz proved the linear convergence of (un1 ; u

n
2)

to (u|�1 ; u|�2) as n tends to in�nity.
The bene�t of these algorithms is the saving in memory requirements. Indeed, if the prob-

lems are solved by direct methods, the cost of the storage is non-linear with respect to the
number of unknowns. By dividing the original problem into smaller pieces the amount of
storage can be signi�cantly reduced.

2.2. Towards faster Schwarz methods

As far as CPU is concerned, the original algorithms ASM and MSM are very slow. Another
weakness of the algorithms is the need of overlapping subdomains. In order to remedy to
these drawbacks, it has been proposed [9] to replace the Dirichlet interface conditions on
@�i\@�, i=1; 2 by Robin interface conditions (@ni + �, where n is the outward normal to
subdomain �i). For example, the modi�ed ASM reads

−�(un+11 ) =f in �1

un+11 = 0 on @�1 ∩ @�(
@
@n1

+ �
)
(un+11 ) =

(
− @
@n2

+ �
)
(un2) on @�1 ∩�2

−�(un+12 ) =f in �2

un+12 = 0 on @�2 ∩ @�(
@
@n2

+ �
)
(un+12 ) =

(
− @
@n1

+ �
)
(un1) on @�2 ∩�1

Note that the normals n1 and n2 are opposite.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1539–1550
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A good choice of the parameter � yields a much better convergence and the overlap between
subdomains is optional. The boundary conditions imposed on @�i\@�, i=1; 2 are called
interface (or matching) conditions.
It is of course possible (and pro�table) to consider even more general interface conditions

of the form:

on @�1 ∩�2: (@n1 + �1 + �1@� − �1@2�2)(un+11 )= (−@n2 + �1 + �1@� − �1@2�2)(un2)

on @�2 ∩�1: (@n2 + �2 + �2@� − �2@2�2)(un+12 )= (−@n1 + �2 + �2@� − �2@2�2)(un1)

with �i; �i; �i, i=1; 2 being optimized for a fast convergence rate.

2.3. Optimized interface conditions

The convergence of the algorithm can be sharply analysed using Fourier transform. This will
enable an optimization of the interface condition.
The model equation is the convection–di�usion equation:

@u
@t
+ a · ∇u− ��u=f (1)

This equation is important in itself in engineering or environmental sciences for instance. It
models the transport and di�usion of species (pollutant in air or water, electrons in semi-
conductor devices, etc.) in a given �ow (with velocity �eld a). It is also a key ingredient
in Navier–Stokes equations. An implicit scheme in time will demand at each time step the
solution of

L(u)≡ u
�t
+ a · ∇u− ��u=f (2)

For the sake of simplicity, we consider the plane R2 decomposed into two half-planes �1 =
]−∞; �[×R and �2 = ]0;∞[×R, �¿0.
Our results are based on the partial Fourier transform in the y direction denoted by f̂(x; k):

let f(x; y) : (l; L)×R→R then

f̂(x; k)=Fy(f)(x; k) :=
∫ ∞

−∞
e−Ikyf(x; y) dy

(I 2 = − 1) and the inverse Fourier transform of f̂(k) is given by

f(x; y)=F−1
y (f̂)(x; y) :=

1
2�

∫ ∞

−∞
eIkyf̂(x; k) dk

This tool is applied to the constant coe�cient convection–di�usion equation, ax and ay are
constants. The convergence rate can be computed explicitly. It shows that in order to have
convergence, the interface condition must have the following form:

@ni +
a · ni
2�

+ �+ �@� − �@2�2
with �; �¿0, � has the same sign as a ·� and where ni is the outward normal to the subdomain
and � is an unit vector tangential to the interface. In other words, it is necessary to have
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�1 − �2 = a · n1=2�, �1 =�2 and �1 = �2. In this case, the convergence rate of the error along
the interface is given in the Fourier space by the following formula (see e.g. Reference [7]):

�(k; �; �; �)≡

∣∣∣∣∣∣∣∣

√
(a · n)2 + 4�c+ 4Ia · ��k + 4�2k2

2�
− (�+ I�k + �k2)√

(a · n)2 + 4�c+ 4Ia · ��k + 4�2k2
2�

+ (�+ I�k + �k2)

∣∣∣∣∣∣∣∣

× e−�
√
(a · n)2 + 4�c+ 4Ia · ��k + 4�2k2

� (3)

This formula deserves some comments:

• under the above assumption, the �rst term is smaller than 1 and the second term is
smaller or equal to one. Therefore, convergence is ensured.

• the size of the overlap appears only in the second exponential term
• when the domains overlap �¿0, the second term is exponentially decreasing w.r.t. the
wavenumber k. Thus, the high frequency part of the error has a very fast decay. For
the low frequency part (k ∼ 0), its decay depend on the value of

√
(a · n)2 + 4�c=2�.

When the �ow is normal to the interface or when the time step is small, the exponential
term is small and convergence is fast. However, such argument is not always true. For
instance when large time steps are considered and when the �ow is tangential to the
interface, this term vanishes and it is not possible to rely on the overlap to ensure a fast
convergence.

The non-overlapping (or very small overlap, �= h) case is currently in practice due to the
need to avoid duplications of grid nodes or because of the use of non-matching grids. In this
case, the convergence rate is given by the �rst term in (3). For any value of the parameters
�; � and �, this term tends to 1 as the wavenumber k goes to in�nity. In a numerical setting,
the wavenumber cannot become in�nite but is bounded from above by �=h where h is the
mesh size. This means that as the mesh size h goes to zero, the e�ective convergence rate
which is the maximum of � over k

�(�; �; �)≡ max
|k|6�=h

�(k; �; �; �)

deteriorates. For instance, if the parameters do not depend on h, it can be checked easily that
�∼ 1 − Cth as h goes to zero. By optimizing the choice of the parameters �; � and �, we
have �∼ 1− Cth1=3 as h goes to zero. The optimization problem to be solved is
Find (�opt ; �opt ; �opt) s.t.

�(�opt ; �opt ; �opt)= min
�; �; �

�(�; �; �)= min
�; �; �

max
|k|6�=h

�(k; �; �; �)

A detailed analysis is given in Reference [8]. Numerical results show the e�ciency of this
approach.
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1544 V. DOLEAN, S. LANTERI AND F. NATAF

3. DERIVATION OF THE CLASSICAL INTERFACE CONDITIONS
FOR THE EULER SYSTEM

We consider the time-dependent compressible Euler equations

@W
@t
+∇ · F(W )=0

W =(�; �U; E)T; ∇=
(
@
@x
;
@
@y

)T

discretized by an implicit scheme. At each time step, a non-linear system is solved

Wn+1 +�t∇ · F(Wn+1)=Wn

by a Newton method. At each step k of the Newton method, the linearized Euler equations
(where J is the Jacobian of ∇ · F) are solved

(Id+�t J (Wn+1; k ))�Wn+1; k+1 = · · ·
by a Domain Decomposition Method.

3.1. The 1D case

The interval [0; L] is decomposed into subintervals ([li; Li])16i6N with or without overlaps.
The linearized system

A
@W
@x

+ BW =G

W =(�; u; p) is solved by a Schwarz-type algorithm

A
@Wk+1

i

@x
+ BWk+1

i =G in (li; Li)

C+i (W
k+1
i )=C+i (W

k
i+1) at x=Li

C−
i (W

k+1
i )=C−

i (W
k
i−1) at x= li

where the matrices C±
i have to be chosen so that the subproblems are well posed and the

algorithm has a fast convergence rate.
In the supersonic velocity case, all the interface conditions have to be imposed at in�ow

and no interface condition has to be imposed at out�ow. C−
i is an invertible 3×3 matrix. From

that point of view of the algorithm, all the interface conditions yield the same algorithm

Wk+1
i =Wk

i−1 at in�ow

and lead to a convergence in a number of steps equal to the number of subdomains.
In the subsonic velocity case, two interface conditions have to be imposed at in�ow and

one at out�ow. They are given below. For a constant coe�cient case (linearization around a
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l L

i-1

i i

Ll i-1

Figure 2. Decomposition of the interval into subdomains.

constant �ow in the direction of positive x), optimal interface conditions can be designed by
diagonalizing the system of equations.

A
@W
@x

+ BW =G

@W
@x

+ A−1BW = A−1G

The matrix A−1B is diagonalized: A−1B=P−1 diag(	j)j=1;:::;3 P with R(	1;2)¿0 and R(	3)¡0.
Let V :=PW and H :=PA−1G, we have

@Vj
@x
+ 	jVj=Hj; j=1; 2; 3

One optimal set of interface conditions for the interval (li; Li) (see Figure 2) reads

V k+1i;1 = V ki−1;1 and V k+1i;2 =V ki−1;2 at x= li

V k+1i;3 = V ki+1;3 at x=Li

By using V :=PW , it is easy to express these relations in terms of the original unknowns.
They yield convergence in a number of steps equal to the number of subdomains.

3.2. Two-dimensional case

The linearized system reads

Ax
@W
@x

+ Ay
@W
@y

+ BW =G

where W =(�; u; v; p). The domain [0; L]×R is decomposed into subintervals ([li; Li]×R)16i6N
with or without overlaps.
The linearized system is solved by a Schwarz-type algorithm

Ax
@Wk+1

i

@x
+ Ay

@Wk+1
i

@y
+ BWk+1

i =G in (li; Li)×R

C+i (W
k+1
i )=C+i (W

k
i+1) at x=Li

C−
i (W

k+1
i )=C−

i (W
k
i−1) at x= li
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where the matrices C±
i have to be chosen so that the subproblems are well posed and the

algorithm has a fast convergence.
In the supersonic velocity case and as in the 1D case, any interface conditions that lead

to a well-posed algorithm yield convergence in a number of steps equal to the number of
subdomains.
In the subsonic velocity case, three interface conditions have to be imposed at in�ow and

one at out�ow. For a constant coe�cient case (linearization around a constant �ow in the
direction of positive x), optimal interface conditions can be designed by diagonalizing the
system of equations in the Fourier space.

Ax
@W
@x

+ Ay
@W
@y

+ BW =G

@W
@x

+ A−1
x Ay

@W
@y

+ A−1
x BW =A−1

x G

We take the Fourier transform in the y direction of the above system (W → W̃ (x; 
); G→
G̃(x; 
)).

@W̃
@x

+ A−1
x AyI
W̃ + A−1

x BW̃ =A−1
x G̃

where I 2 = − 1. For each 
, the matrix A−1
x Ay I 
 + A−1

x B is diagonalized: A−1
x Ay I 
 +

A−1
x B=P

−1(
) diag(	j(
))j=1;:::;4P(
) with R(	1;2;3(
))¿0 and R(	4(
))¡0. Let Ṽ :=P(
)W̃
and H̃ :=PA−1

x G̃, we have

@Ṽj(x; 
)
@x

+ 	j(
)Ṽj(x; 
)= H̃j(x; 
); j=1; 2; 3; 4

One optimal set of interface conditions for the subdomain (li; Li)×R (see Figure 3) reads
Ṽ k+1i; j (li; 
)= Ṽ ki−1; j(li; 
); j=1; 2; 3

Ṽ k+1i;4 (Li; 
)= Ṽ ki+1;4(Li; 
)

They yield convergence in a number of steps equal to the number of subdomains. By using
Ṽ (x; 
) :=P(
)W̃ (x; 
), the last one (e.g.) is equivalent to

F−1(P(
)W̃ (Li; 
)k+1i )4 =F−1(P(
)W̃ (Li; 
)ki−1)4

But, these interface conditions are pseudodi�erential and di�cult to use. These interface
conditions are also exact absorbing boundary conditions. Classically, they can be approximated
for 
=0. The approximation to the last interface condition reads

F−1(P(0)W̃ (Li; 
)k+1i )4 =F−1(P(0)W̃ (Li; 
)ki−1)4

or,

(P(0)Wk+1
i )4(Li; y)= (P(0)Wk

i−1)4(Li; y)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1539–1550
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L il i

i-1Ll i-1

Figure 3. Decomposition of the plane into vertical strips.

The other ones read

(P(0)Wk+1
i )j(li; y)= (P(0)Wk

i−1)j(li; y); j=1; 2; 3

In the next section, we analyse the convergence rate of a domain decomposition method based
on these interface conditions.

4. ANALYSIS OF THE CLASSICAL INTERFACE CONDITIONS
FOR THE EULER SYSTEM

In the case of a non-overlapping decomposition of the plane into two half-planes, the conver-
gence rate of the error along the interface can be computed explicitly by a Fourier analysis
similar to the one of the scalar case

�(
;Mn;Mt)=
∣∣∣∣ R(
)− a(R(
) + a)2

· R(
)(1− 3Mn)− a(1 +Mn)
1 +Mn

∣∣∣∣
where R(
)=

√
a2 + 
2(1−M 2

n ), a=1=c�t + I 
Mt , Mn is the Mach number normal to the
interface and Mt is the tangential Mach number (total Mach number M =

√
M 2
n +M 2

t ) and c
is the sound speed.
Properties

1. |�(
;Mn;Mt)|¡1 and �(0; Mn;Mt)=0
2. Special asymptotic behaviour at high wave numbers

|�(∞; Mn;Mt)|=
√(

1− 3Mn

1 +Mn

)2
+

8MnM 2
t

(1 +Mn)2

so that �(∞; 1=3 ; 0)=0!!!!!
Property 1 resembles that of the scalar case. The �rst statement in Property 1 shows that
there is convergence. The result is indeed general and has been proved for an arbitrary
decomposition and a variable coe�cient operator in Reference [10]. The second statement
of Property 1 is to be expected. The optimal interface conditions have been approximated at

=0.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1539–1550
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5. COMPARISON BETWEEN THE SCALAR AND THE SYSTEM CASES

The main di�erence with respect to the scalar case comes from Property 2. In a numerical
setting, the convergence rate can be estimated by

�(Mn;Mt)= max
|
|6�=h

�(
;Mn;Mt)6 max
|
|6∞

�(
;Mn;Mt)¡1

Property 2 therefore means that the iteration count is uniformly bounded as the mesh size h
goes to zero. This is very di�erent from the scalar case where the convergence rate deteriorates
as h goes to zero, see Section 2.3. Moreover and surprisingly enough, for a velocity normal
to the interface and a Mach number equals to 1

3 , the convergence rates tends to zero as 

tends to in�nity. Actually, the really meaningful quantity is the maximum over 
 of � as a
function of the Mach number which is a bell curve (Figure 4) and which has a minimal value
for Mn close to 1

3 .
In the scalar case, there is a monotone dependence of the convergence rate w.r.t. the normal

component of the velocity at the interface.
These theoretical considerations agree qualitatively well with numerical tests performed at

INRIA Sophia Antipolis: a �ow in a tube divided into two half tubes is computed by a
domain decomposition method using the classical interface conditions. This computation is
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Figure 4. Convergence rate as a function of the Mach number.
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Figure 5. Number of iterations vs. the normal Mach number Mn for more and more re�ned meshes.

performed on three di�erent meshes (RU1, RU2 and RU3) which are �ner and �ner (resp.
3740, 14 520 and 57 203 vertices). The number of iterations for the convergence of the domain
decomposition method is plotted in Figure 5 as a function of the Mach number. We see that
as the mesh size h is smaller, the number of iterations tends to a �nite limit. Moreover, the
curve is a ‘bell’ curve as predicted although the minimum is reached at Mn∼ 0:6 and is not
close to 1

3 .

6. CONCLUSION AND PERSPECTIVES

These surprising results on domain decomposition methods for the system of compressible
Euler equations are studied in a joint paper in this volume by V. Dolean et al. The analysis
is based on the use of the Smith factorization of the matrices with polynomial entries. This
enables the design of new interface conditions which are signi�cantly better than the classical
ones for Mach numbers close to 1.
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